Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542512

RESUMEN

Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. They form the dominant group of diseases among emerging infectious diseases and represent critical threats to global health security. This dilemma is largely attributed to our insufficient knowledge of the pathogenesis regarding zoonotic spillover. Long non-coding RNAs (lncRNAs) are transcripts with limited coding capacity. Recent technological advancements have enabled the identification of numerous lncRNAs in humans, animals, and even pathogens. An increasing body of literature suggests that lncRNAs function as key regulators in zoonotic infection. They regulate immune-related epigenetic, transcriptional, and post-transcriptional events across a broad range of organisms. In this review, we discuss the recent research progress on the roles of lncRNAs in zoonoses. We address the classification and regulatory mechanisms of lncRNAs in the interaction between host and zoonotic pathogens. Additionally, we explore the surprising function of pathogen-derived lncRNAs in mediating the pathogenicity and life cycle of zoonotic bacteria, viruses, and parasites. Understanding how these lncRNAs influence the zoonotic pathogenesis will provide important therapeutic insights to the prevention and control of zoonoses.


Asunto(s)
Enfermedades Transmisibles Emergentes , ARN Largo no Codificante , Virus , Animales , Humanos , ARN Largo no Codificante/genética , Zoonosis/genética
2.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536757

RESUMEN

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Asunto(s)
Arbovirus , Hemípteros , Oryza , Tenuivirus , Animales , Arbovirus/genética , Hemípteros/fisiología , Tenuivirus/fisiología , Insectos Vectores , Antivirales/metabolismo , Oryza/genética , Enfermedades de las Plantas
3.
J Clin Periodontol ; 51(4): 417-430, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38016486

RESUMEN

AIM: This Mendelian randomization (MR) study was performed to explore the potential bidirectional causal relationship between the gut microbiome (GM) and periodontitis. MATERIALS AND METHODS: We used genetic instruments from the genome-wide association study of European descent for periodontitis from the GeneLifestyle Interactions in Dental Endpoints (GLIDE) consortium (17,353 cases and 28,210 controls) and the FinnGen consortium (4434 cases and 259,234 controls) to investigate the causal relationship with GM (the MiBioGen consortium, 18,340 samples), and vice versa. Several MR techniques, which include inverse variance weighting (IVW), MR-Egger, weighted median, simple mode and weighted mode approaches, were employed to investigate the causal relationship between the exposures and the outcomes. Cochran's Q-test was performed to detect heterogeneity. The MR-Egger regression intercept and MR pleiotropy residual sum and outlier test (MR-PRESSO) were conducted to test potential horizontal pleiotropy. Leave-one-out sensitivity analyses were used to assess the stabilities of single nucleotide polymorphisms (SNPs). Finally, the IVW results from the two databases were analysed using meta-analysis. RESULTS: We confirmed three potential causal relationships between GM taxa and periodontitis at the genus level. Among them, the genera Alistipes and Holdemanella were genetically associated with an increased risk of periodontitis. In reverse, periodontitis may lead to a decreased abundance of the genus Ruminococcaceae UCG014. CONCLUSIONS: The demonstration of a causal link between GM and periodontitis provides compelling evidence, highlighting the interconnectivity and interdependence of the gut-oral and oral-gut axes.


Asunto(s)
Microbioma Gastrointestinal , Periodontitis , Humanos , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad , Periodontitis/genética
4.
Nat Commun ; 14(1): 7264, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945658

RESUMEN

Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.


Asunto(s)
Artrópodos , Hemípteros , Animales , Artrópodos/genética , Hemípteros/genética , Retroviridae
5.
Oral Dis ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37807890

RESUMEN

OBJECTIVE: This study aimed to investigate the effect of METTL3 knockdown on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in the weak inflammation microenvironments, as well as the underlying mechanisms. MATERIALS AND METHODS: PDLSCs were stimulated by lipopolysaccharide from Escherichia coli (E. coli LPS), followed by quantification of METTL3. METTL3 expression was assessed using RT-qPCR and Western blot analysis in periodontitis. METTL3 knockdown PDLSCs were stimulated with or without E. coli LPS. The evaluation included proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules. Bioinformatics analysis and Western blot determined the association between METTL3 and the PI3K/Akt pathway. RESULTS: METTL3 was overexpressed in periodontitis. METTL3 knockdown in PDLSCs reduced proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules in both environments. Bioinformatics analysis suggested a link between METTL3 and the PI3K/Akt pathway. METTL3 knockdown inhibited PI3K/Akt signaling pathway activation. CONCLUSION: METTL3 knockdown might inhibit osteogenesis in PDLSCs through the inactivation of PI3K/Akt signaling pathway. Concomitant findings might shed novel light on the roles and potential mechanisms of METTL3 in the LPS-stimulated inflammatory microenvironments of PDLSCs.

6.
J Periodontal Res ; 58(5): 968-985, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357608

RESUMEN

BACKGROUND AND OBJECTIVES: Periodontitis, a prevalent chronic inflammatory condition, poses a significant risk of tooth loosening and subsequent tooth loss. Within the realm of programmed cell death, a recently recognized process known as necroptosis has garnered attention for its involvement in numerous inflammatory diseases. Nevertheless, its correlation with periodontitis is indistinct. Our study aimed to identify necroptosis-related lncRNAs and crucial lncRNA-miRNA-mRNA regulatory axes in periodontitis to further understand the pathogenesis of periodontitis. MATERIALS AND METHODS: Gene expression profiles in gingival tissues were acquired from the Gene Expression Omnibus (GEO) database. Selecting hub necroptosis-related lncRNA and extracting the key lncRNA-miRNA-mRNA axes based on the ceRNA network by adding novel machine-learning models based on conventional analysis and combining qRT-PCR validation. Then, an artificial neural network (ANN) model was constructed for lncRNA in regulatory axes, and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Weighted correlation network analysis (WGCNA) and single-sample gene set enrichment analysis (ssGSEA) was performed to explore how these lncRNAs work in periodontitis. RESULTS: Seven hub necroptosis-related lncRNAs and three lncRNA-miRNA-mRNA regulatory axes (RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis, RP11-96D1.11/hsa-miR-185-5p/EZH2 axis, and RP4-773 N10.4/hsa-miR-21-5p/TLR3 axis) were predicted. WGCNA revealed that RP11-138A9.1 was significantly correlated with the "purple module". Functional enrichment analysis and ssGSEA demonstrated that the RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis is closely related to the inflammation and immune processes in periodontitis. CONCLUSION: Our study predicted a crucial necroptosis-related regulatory axis (RP11-138A9.1/hsa-miR-98-5p/ZBP1) based on the ceRNA network, which may aid in elucidating the role and mechanism of necroptosis in periodontitis.


Asunto(s)
MicroARNs , Periodontitis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Necroptosis/genética , Periodontitis/genética , MicroARNs/genética , ARN Mensajero
7.
Inflammation ; 46(5): 1932-1951, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311930

RESUMEN

Periodontitis is a prevalent and persistent inflammatory condition that impacts the supporting tissues of the teeth, including the gums and bone. Recent research indicates that mitochondrial dysfunction may be involved in the onset and advancement of periodontitis. The current work sought to reveal the interaction between mitochondrial dysfunction and the immune microenvironment in periodontitis. Public data were acquired from MitoCarta 3.0, Mitomap, and GEO databases. Hub markers were screened out by five integrated machine learning algorithms and verified by laboratory experiments. Single-cell sequencing data were utilized to unravel cell-type specific expression levels of hub genes. An artificial neural network model was constructed to discriminate periodontitis from healthy controls. An unsupervised consensus clustering algorithm revealed mitochondrial dysfunction-related periodontitis subtypes. The immune and mitochondrial characteristics were calculated using CIBERSORTx and ssGSEA algorithms. Two hub mitochondria-related markers (CYP24A1 and HINT3) were identified. Single-cell sequencing data revealed that HINT3 was primarily expressed in dendritic cells, while CYP24A1 was mainly expressed in monocytes. The hub genes based artificial neural network model showed robust diagnostic performance. The unsupervised consensus clustering algorithm revealed two distinct mitochondrial phenotypes. The hub genes exhibited a strong correlation with the immune cell infiltration and mitochondrial respiratory chain complexes. The study identified two hub markers that may serve as potential targets for immunotherapy and provided a novel reference for future investigations into the function of mitochondria in periodontitis.


Asunto(s)
Periodontitis , Humanos , Vitamina D3 24-Hidroxilasa , Mitocondrias , Biología Computacional , Aprendizaje Automático
8.
J Periodontal Res ; 58(3): 529-543, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36941720

RESUMEN

OBJECTIVE: This study aims to investigate the differences in the epigenomic patterns of N6-methyladenosine (m6A) methylation in gingival tissues between patients with periodontitis (PD) and healthy controls, identifying potential biomarkers. BACKGROUND: As a multifactorial disease, PD involves multiple genetic and environmental effects. The m6A modification is the most prevalent internal mRNA modification and linked to various inflammatory diseases. However, the m6A modification pattern and m6A-related signatures in PD remain unclear. MATERIALS AND METHODS: An m6A microarray of human gingival tissues was conducted in eight subjects: four diagnosed with PD and four healthy controls. Microarray analysis was performed to identify the differentially m6A methylated mRNAs (DMGs) and the differentially expressed mRNAs (DEGs). The differentially methylated and expressed mRNAs (DMEGs) were subjected to functional enrichment analysis by Metascape. The weighted gene co-expression network analysis (WGCNA) algorithm, the least absolute shrinkage and selection operator (LASSO) regression, and univariate logistic regression were performed to identify potential biomarkers. The cell type localization of the target genes was determined using single-cell RNA-seq (scRNA-seq) analysis. The m6A methylation level and gene expression of hub genes were subsequently verified by m6A methylated RNA immunoprecipitation (MeRIP) and quantitative real-time PCR (qRT-PCR). RESULTS: In total, 458 DMGs, 750 DEGs, and 279 DMEGs were identified based on our microarray. Pathway analyses conducted for the DMEGs revealed that biological functions were mainly involved in the regulation of stem cell differentiation, ossification, circadian rhythm, and insulin secretion pathways. Besides, the genes involved in crucial biological processes were mainly expressed in fibroblast and epithelial cells. Furthermore, the m6A methylation and expression levels of two hub biomarkers (DNER and GNL2) were validated. CONCLUSION: The current study exhibited a distinct m6A epitranscriptome, identified and verified two PD-related biomarkers (DNER and GNL2), which may provide novel insights into revealing the new molecular mechanisms and latent targets of PD.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Transcriptoma/genética , Análisis por Micromatrices , Diferenciación Celular , Células Epiteliales , Proteínas del Tejido Nervioso , Receptores de Superficie Celular
9.
Nat Commun ; 14(1): 737, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759625

RESUMEN

Salivary elicitors secreted by herbivorous insects can be perceived by host plants to trigger plant immunity. However, how insects secrete other salivary components to subsequently attenuate the elicitor-induced plant immunity remains poorly understood. Here, we study the small brown planthopper, Laodelphax striatellus salivary sheath protein LsSP1. Using Y2H, BiFC and LUC assays, we show that LsSP1 is secreted into host plants and binds to salivary sheath via mucin-like protein (LsMLP). Rice plants pre-infested with dsLsSP1-treated L. striatellus are less attractive to L. striatellus nymphs than those pre-infected with dsGFP-treated controls. Transgenic rice plants with LsSP1 overexpression rescue the insect feeding defects caused by a deficiency of LsSP1 secretion, consistent with the potential role of LsSP1 in manipulating plant defenses. Our results illustrate the importance of salivary sheath proteins in mediating the interactions between plants and herbivorous insects.


Asunto(s)
Hemípteros , Oryza , Animales , Oryza/genética , Hemípteros/genética , Herbivoria , Plantas Modificadas Genéticamente , Ninfa
10.
Front Immunol ; 13: 1042484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389665

RESUMEN

Background: Periodontitis (PD), an age-related disease, is characterized by inflammatory periodontal tissue loss, and with the general aging of the global population, the burden of PD is becoming a major health concern. Nevertheless, the mechanism underlying this phenomenon remains indistinct. We aimed to develop a classification model for PD and explore the relationship between aging subtypes and the immune microenvironment for PD based on bioinformatics analysis. Materials and Methods: The PD-related datasets were acquired from the Gene Expression Omnibus (GEO) database, and aging-related genes (ARGs) were obtained from the Human Aging Genomic Resources (HAGR). Four machine learning algorithms were applied to screen out the hub ARGs. Then, an artificial neural network (ANN) model was constructed and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Consensus clustering was employed to determine the aging expression subtypes. A series of bioinformatics analyses were performed to explore the PD immune microenvironment and its subtypes. The hub aging-related modules were defined using weighted correlation network analysis (WGCNA). Results: Twenty-seven differentially expressed ARGs were dysregulated and a classifier based on four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) was constructed to diagnose PD with excellent accuracy. Subsequently, the mRNA levels of the hub ARGs were validated by quantitative real-time PCR (qRT-PCR). Based on differentially expressed ARGs, two aging-related subtypes were identified. Distinct biological functions and immune characteristics including infiltrating immunocytes, immunological reaction gene sets, the human leukocyte antigen (HLA) gene, and immune checkpoints were revealed between the subtypes. Additionally, the black module correlated with subtype-1 was manifested as the hub aging-related module and its latent functions were identified. Conclusion: Our findings highlight the critical implications of aging-related genes in modulating the immune microenvironment. Four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) formed a classification model, and accompanied findings revealed the essential role of aging in the immune microenvironment for PD, providing fresh inspiration for PD etiopathogenesis and potential immunotherapy.


Asunto(s)
Perfilación de la Expresión Génica , Periodontitis , Humanos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Biología Computacional , Envejecimiento/genética , Periodontitis/genética
11.
Cell Biochem Biophys ; 80(4): 807-818, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36194314

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Although significant advances have been achieved in the treatment of NSCLC during the past two decades, the 5-year survival rate of patients with NSCLC remains <20%. Thus, there is an urgent requirement to further understand the molecular mechanisms that promote NSCLC development and to identify novel therapeutic targets. In the present study, the gene expression profiles of patients with NSCLC from The Cancer Genome Atlas database were carefully analyzed and SPINK1 was identified as a tumor-inducing factor. SPINK1 expression level was found to be increased in both NSCLC tissues and cell lines. Moreover, SPINK1 promoted cell proliferation in A549 and H1299 cells. Knockdown of SPINK1 could activate cell autophagy and apoptosis. Mechanistically, SPINK1 was demonstrated to induce the proliferation of NSCLC via activating the MEK/ERK signaling pathway. In conclusion, these findings suggested that SPINK1 may serve as a potential biomarker in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inhibidores de Proteasas , Serina/metabolismo , Inhibidor de Tripsina Pancreática de Kazal/genética , Inhibidor de Tripsina Pancreática de Kazal/metabolismo
12.
Cytokine ; 159: 156014, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084605

RESUMEN

OBJECTIVES: This bioinformatics study is aimed at identifying cross-talk genes, pyroptosis-related genes, and related pathways between periodontitis (PD) and diabetes mellitus (DM), which includes type 1 diabetes (T1DM) and type 2 diabetes (T2DM). METHODS: GEO datasets containing peripheral blood mononuclear cell (PBMC) data of PD and DM were acquired. After batch correction and normalization, differential expression analysis was performed to identify the differentially expressed genes (DEGs). And cross-talk genes in the PD-T1DM pair and the PD-T2DM pair were identified by overlapping DEGs with the same trend in each pair. The weighted gene coexpression network analysis (WGCNA) algorithm helped locate the pyroptosis-related genes that are related to cross-talk genes. Receiver-operating characteristic (ROC) curve analysis confirmed the predictive accuracy of these hub genes in diagnosing PD and DM. The correlation between hub genes and the immune microenvironment of PBMC in these diseases was investigated by Spearman correlation analysis. The experimentally validated protein-protein interaction (PPI) and gene-pathway network were constructed. Subnetwork analysis helped identify the key pathway connecting DM and PD. RESULTS: Hub genes in the PD-T1DM pair (HBD, NLRC4, AIM2, NLRP2) and in the PD-T2DM pair (HBD, IL-1Β, AIM2, NLRP2) were identified. The similarity and difference in the immunocytes infiltration levels and immune pathway scores of PD and DM were observed. ROC analysis showed that AIM2 and HBD exhibited pleasant discrimination ability in all diseases, and the subnetwork of these genes indicated that the NOD-like receptor signaling pathway is the most potentially relevant pathway linking PD and DM. CONCLUSION: HBD and AIM2 could be the most relevant potential cross-talk and pyroptosis-related genes, and the NOD-like receptor signaling pathway could be the top candidate molecular mechanism linking PD and DM, supporting a potential pathophysiological relationship between PD and DM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Periodontitis , Biología Computacional , Análisis de Datos , Diabetes Mellitus Tipo 2/genética , Perfilación de la Expresión Génica , Humanos , Leucocitos Mononucleares , Proteínas NLR/genética , Piroptosis/genética
13.
Front Microbiol ; 13: 875091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160195

RESUMEN

Aim: To assess the contribution of polymicrobial disruption of host homeostasis to periodontitis progression in orthodontic wire ligation murine model. Methods: Orthodontic wire rings were inserted between the first and second molars of mice for 18 days for the orthodontic wire ligation mouse model, and Pg injection model and Pg-LPS injection model were used as controls. Alveolar bone loss and periodontal inflammation were analyzed by micro-CT, histological staining and qRT-PCR. Further, pyrosequencing of 16S rRNA gene amplicon was used to analyze the development of oral microorganism dysbiosis in the mice. Results: Micro-CT, TRAP staining and qRT-PCR showed that orthodontic wire ligation model led to more severe alveolar bone loss than Pg and Pg-LPS models.H&E staining and qRT-PCR demonstrated that stronger inflammatory response was induced by the orthodontic wire treatment compared to the other models. In addition, pyrosequencing of 16S rRNA gene amplicons revealed that the composition of oral microbiota presented a transition as the disease progressed and significant differences emerged in oral microbiota communities between orthodontic ligature mice and healthy controls. Furthermore, antibiotic treatment decreased both inflammation and alveolar bone loss in response to microbial community dysbiosis. However, no significant difference in bacterial community composition was observed in Pg and Pg-LPS models. Conclusions: Orthodontic wire ligation drove oral microbial community transitions that mimicked polymicrobial communities characterized by polymicrobial synergy and dysbiosis. Our improved model is suitable for further study of pathogenesis of periodontitis and exploration of corresponding treatment strategies.

14.
J Periodontal Res ; 57(5): 977-990, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35839262

RESUMEN

BACKGROUND AND OBJECTIVE: Published studies proved that both pyroptosis and periodontitis owned a substantial relationship with immunity, and recent research revealed a solid correlation between periodontitis and pyroptosis. While abundant findings have confirmed pyroptosis has a strong impact on the tumor microenvironment, the function of pyroptosis in influencing the periodontitis immune microenvironment remains poorly understood. Thus, we aimed to identify pyroptosis-related genes whose expression signature can well discriminate periodontitis from healthy controls and to comprehend the role of pyroptosis in the periodontitis immune microenvironment. MATERIALS AND METHODS: The periodontitis-related datasets were acquired from the Gene Expression Omnibus (GEO) database. A series of bioinformatics analyses were conducted to investigate the underlying mechanism of pyroptosis in the periodontitis immune microenvironment. Infiltrating immunocytes, immunological reaction gene sets, and the human leukocyte antigen (HLA) gene were all investigated as potential linkages between periodontitis immune microenvironment and pyroptosis. RESULTS: Twenty-one pyroptosis-related genes were dysregulated. A four-mRNA combined classification model was constructed, and the receiver operating characteristic (ROC) curve analysis demonstrated its prominent classification capabilities. Subsequently, the mRNA levels of the four hub markers (CYCS, CASP3, NOD2, CHMP4B) were validated by quantitative real-time PCR (qRT-PCR). The correlation coefficients between each hub gene and immune characteristics were calculated, and CASP3 exhibited the most significant correlations with the immune characteristics. Furthermore, distinct pyroptosis-related expression patterns were revealed, along with immunological features of each pattern. Afterward, we discovered 1868 pyroptosis phenotype-related genes, 134 of which were related to immunity. According to the functional enrichment analysis, these 134 genes were closely related to cytokine signaling in immune system, and defense response. Finally, a co-expression network was constructed via the 1868 gene expression profiles. CONCLUSION: Four hub mRNAs (CYCS, CASP3, NOD2, and CHMP4B) formed a classification model and concomitant results revealed the crucial role of pyroptosis in the periodontitis immune microenvironment, providing fresh insights into the etiopathogenesis of periodontitis and potential immunotherapy.


Asunto(s)
Periodontitis , Piroptosis , Caspasa 3 , Humanos , Periodontitis/genética , Piroptosis/genética , ARN Mensajero , Microambiente Tumoral/genética
15.
J Periodontal Res ; 57(4): 811-823, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35653494

RESUMEN

OBJECTIVE: To explore the role of Marginal Zone B and B-1 Cell-Specific Protein (MZB1), a novel molecule associated with periodontitis, in migration of human periodontal ligament cells (hPDLCs) and alveolar bone orchestration. BACKGROUND: MZB1 is an ER-localized protein and its upregulation has been found to be associated with a variety of human diseases. However, few studies have investigated the effect and mechanism of MZB1 on hPDLCs in periodontitis. METHODS: Gene expression profiles in human gingival tissues were acquired from the Gene Expression Omnibus (GEO) database, and candidate molecules were then selected through bioinformatic analysis. Subsequently, we identified the localization and expression of MZB1 in human gingival tissues, mice, and hPDLCs by immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was applied to assess the binding of miR-185-5p to MZB1. Furthermore, the effects of MZB1 on cell migration, proliferation, and apoptosis in vitro were investigated by wound-healing assay, transwell assay, CCK-8 assay, and flow cytometry analysis. Finally, Micro-CT analysis and H&E staining were performed to examine the effects of MZB1 on alveolar bone loss in vivo. RESULTS: Bioinformatic analysis discovered that MZB1 was one of the most significantly increased genes in periodontitis patients. MZB1 was markedly increased in the gingival tissues of periodontitis patients, in the mouse models, and in the hPDLCs treated with lipopolysaccharide of Porphyromonas gingivalis (LPS-PG). Furthermore, in vitro experiments showed that MZB1, as a target gene of miR-185-5p, inhibited migration of hPDLCs. Overexpression of MZB1 specifically upregulated the phosphorylation of p65, while pretreatment of MZB1-overexpressed hPDLCs with PDTC (NF-κB inhibitor) notably reduced the p-p65 level and promoted cell migration. In addition, the mRNA expression levels of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (Runx2) were inhibited in MZB1-overexpressed hPDLCs and miR-185-5p inhibitor treated hPDLCs, respectively. In vivo experiments showed that knockdown of MZB1 alleviated the loss of alveolar bone. CONCLUSION: As a target gene of miR-185-5p, MZB1 plays a crucial role in inhibiting the migration of hPDLCs through NF-κB signaling pathway and deteriorating alveolar bone loss.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Pérdida de Hueso Alveolar , MicroARNs , Periodontitis , Proteínas Adaptadoras Transductoras de Señales/genética , Pérdida de Hueso Alveolar/genética , Pérdida de Hueso Alveolar/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , MicroARNs/genética , FN-kappa B/metabolismo , Osteogénesis , Ligamento Periodontal/metabolismo , Periodontitis/genética , Periodontitis/metabolismo , Transducción de Señal/genética
16.
Arch Virol ; 167(4): 1215-1219, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35257228

RESUMEN

The ladybird beetle Cheilomenes sexmaculata (family Coccinellidae, order Coleoptera) is a common insect predator of agricultural pests. In this study, the full genome sequence of a novel picorna-like virus, tentatively named "Cheilomenes sexmaculata picorna-like virus 1" (CSPLV1), was identified in C. sexmaculata. The full-length sequence of CSPLV1 is 11,384 nucleotides (nt) in length (excluding the polyA tail), with one predicted open reading frame (ORF) encoding a polyprotein of 3727 amino acids, a 13-nt 5' untranslated region (UTR), and a 187-nt 3' UTR. The ORF of CSPLV1 consists of four distinct domains, including an RNA virus helicase domain (nt 3029-3319), a peptidase domain (nt 5555-6121), an RNA-dependent RNA polymerase domain (nt 7154-8101), and a picorna-like coat protein domain (nt 8606-9283). Phylogenetic analysis based on the conserved RdRP sequence showed that CSPLV1, together with Wuhan house centipede virus 3, Hypera postica associated virus 1, and Diabrotica undecimpunctata virus 1, forms an unclassified group that is closely related to members of the family Solinviviridae. To the best of our knowledge, CSPLV1 is the first picorna-like virus discovered in C. sexmaculata.


Asunto(s)
Escarabajos , Secuencia de Aminoácidos , Animales , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética
17.
Insects ; 14(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36661938

RESUMEN

A large number of RNA viruses have been discovered in most insect orders using high-throughput sequencing (HTS) and advanced bioinformatics methods. In this study, an RNA virome of the grasshopper was systematically identified in Atractomorpha sinensis (Orthoptera: Pyrgomorphidae), an important agricultural pest known as the pink-winged grasshopper. These insect viruses were classified as the nege-like virus, iflavirus, ollusvirus, and chu-like virus using HTS and phylogenetic analyses. Meanwhile, the full sequences of four novel RNA viruses were obtained with RACE and named Atractomorpha sinensis nege-like virus 1 (ASNV1), Atractomorpha sinensis iflavirus 1 (ASIV1), Atractomorpha sinensis ollusvirus 1 (ASOV1), and Atractomorpha sinensis chu-like virus 1 (ASCV1), respectively. Moreover, the analysis of virus-derived small interfering RNAs showed that most of the RNA viruses were targeted by the host antiviral RNA interference pathway. Moreover, our results provide a comprehensive analysis on the RNA virome of A. sinensis.

18.
J Immunol Res ; 2021: 5510869, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34258296

RESUMEN

Circular RNA (circRNA) is a type of noncoding RNA that can interact with miRNAs to regulate gene expression. However, little is known concerning circRNA, which is crucial in the pathogenesis of lung cancer. To date, limited studies have explored the role of circ_0044516 in lung cancer progression. Recently, we observed that circ_0044516 expression levels were obviously elevated in lung cancer tissues and cells. A549 and SPCA1 cells were transfected with circ_0044516 siRNA. We observed that knockdown of circ_0044516 dramatically repressed cell proliferation, increased cell apoptosis, and repressed the cell cycle. Moreover, A549 and SPCA1 cell migration and invasion abilities were greatly repressed by circ_0044516 siRNA. Due to accumulating evidence demonstrating the vital role of cancer stem cells, their mechanism of involvement has drawn increasing attention in tumor progression and metastasis research. We also found that cancer stem cell properties were restrained by silencing circ_0044516 in A549 and SPC-A1 cells. Moreover, in vivo xenograft experiments showed that circ_0044516 downregulation reduced tumor growth. Mechanistically, in lung cancer and using bioinformatics, we demonstrated that circ_0044516 sponges miR-136 targeting MAT2A. Furthermore, rescue assays were carried out to identify that circ_0044516 modulates cell proliferation, invasion, and stemness by regulating miR-136 and MAT2A in lung cancer. In summary, our study revealed that the circ_0044516/miR-136/MAT2A axis is involved in lung cancer progression. Our findings may provide novel targets for diagnosis and therapeutic intervention in lung cancer patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Metionina Adenosiltransferasa/genética , MicroARNs/metabolismo , ARN Circular/metabolismo , Células A549 , Animales , Movimiento Celular/genética , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/patología , Invasividad Neoplásica/genética , ARN Circular/genética , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncol Rep ; 45(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34184748

RESUMEN

Lung cancer is one of the most malignant type of tumors worldwide. Non­small cell lung cancer (NSCLC), which is the most common type of lung cancer, is defined as a distinct disease that exhibits both genetic and cellular heterogeneity. Although in the past two decades significant advances in the treatment of NSCLC have besen performed, the 5­year survival rate of patients with NSCLC remains <20%. Thus, there is an urgent requirement to gain an in­depth understanding of the molecular mechanisms that promote NSCLC development and to identify novel therapeutic targets. In the present study, the gene expression profiles of patients with NSCLC from The Cancer Genome Atlas database were analyzed to determine potential therapeutic targets, and transmembrane protein 100 (TMEM100) was identified as a candidate tumor suppressor. TMEM100 expression level was discovered to be decreased in both NSCLC tissues and cell lines, and it was observed to be negatively associated with the TNM stage and positively associated with prognosis. Moreover, TMEM100 inhibited tumor growth and promoted cell apoptosis in A549 and H460 cells. Mechanistically, TMEM100 was demonstrated to induce autophagy in A549 cells via inhibiting the PI3K/AKT signaling pathway, whereas inhibiting autophagy using bafilomycin A1 significantly enhanced TMEM100­induced apoptosis to compensate for the cell death. In conclusion, these findings suggested that TMEM100 may serve as a tumor suppressor in NSCLC and promote autophagy via inhibiting the PI3K/AKT signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/biosíntesis , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Apoptosis/fisiología , Autofagia/fisiología , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
20.
PLoS One ; 16(6): e0252856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34161338

RESUMEN

Cucumber green mottle mosaic virus (CGMMV), a critical plant virus, has caused significant economic losses in cucurbit crops worldwide. It has not been proved that CGMMV can be transmitted by an insect vector. In this study, the physical contact transmission of CGMMV by Myzus persicae in Nicotiana benthamiana plants was confirmed under laboratory conditions. The acquisition rate increased with time, and most aphids acquired CGMMV at 72 h of the acquisition access period (AAP). Besides, the acquired CGMMV was retained in the aphids for about 12 h, which was efficiently transmitted back to the healthy N. benthamiana plants. More importantly, further experiments suggested that the transmission was mediated by physical contact rather than the specific interaction between insect vector and plant virus. The results obtained in our study contribute to the development of new control strategies for CGMMV in the field.


Asunto(s)
Áfidos/fisiología , Insectos Vectores/virología , Nicotiana/virología , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Tobamovirus/fisiología , Virosis/transmisión , Animales , Interacciones Huésped-Patógeno , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...